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7,12-Dimethylbenz[a]anthracene (DMBA) is one of the 
most potent polycyclic aromatic hydrocarbon (PAH) car- 
cinogens;' in fact, DMBA-induced tumors are commonly 
used in cancer research. Such important biological activity 
has been attributed to various metabolites of DMBA, in- 
cluding 7-(hydroxymethyl)-12-methylbenz[a]anthra~ene,~ 
DMBA bay-region dihydrodiol epoxides: and the K-region 
DMBA 5,6-0xide.~ Although current thinking is that 
DMBA bay-region dihydrodiol epoxides are the most 
carcinogenic metabolites, a significant role for the K-region 
epoxide in carcinogenesis cannot be ruled out. For exam- 
ple, the finding that 5-fluor0 DMBA is only weakly car- 
cinogenic led to the conclusion that the 5-position of 
DMBA "is probably involved in carcin~genesis,"~ and 
DMBA 5,6-oxide was indeed shown to be capable of 
transforming mouse fibroblasts in vitro6 and of initiating 
tumors in mice.' Recently several DMBA 5,6-oxide ad- 
ducts with guanosine residues of both DNA and RNA have 
been reported.8 I t  seemed appropriate, therefore, to 
pursue our interest in nucleophilic opening of epoxidesg 
by studying the behavior of DMBA 5,6-oxide toward 
various nitrogen, oxygen, and sulfur nucleophiles under 
homogeneous and heterogeneous conditions and thus to 
learn more about the fundamental chemistry of K-region 
epoxides. We repa: t here the results of this investigation 
on the synthetically useful, alumina-promoted, nucleophilic 
opening of DMBA 5,6-oxide as well as the surprising and 
perhaps biologically significant finding that under nona- 
queous homogeneous conditions aniline is enormously 
more effective than the more basic benzylamine in adding 
to DMBA 5,g-oxide. 

Results and Discussion 
A. Homogeneous Reactions. Typically, studies on 

nucleophilic opening of K-region epoxides by amines have 
involved prolonged reaction times at ambient temperature 
and/or shorter periods of reflux in aqueous tetrahydro- 
furan; nonaromatic amines have been preferred over aro- 
matic amines presumably due to the relatively higher 
nucleophilicity of the former.1° Because the basicity and 
nucleophilicity of the amino group of aniline match those 
of the biologically important 2-amino group of guanine,4bJ1 
we treated DMBA 5,6-oxide with 5 equiv of aniline in 
anhydrous diethyl ether solvent at 25 "C for 2 h; product 
isolation and characterization revealed exclusively trans 
adduct formation in 88% yield, with a 4:l regioselectivity 
for nucleophilic attack at  position 5 vs. 6 (eq 1). When 

1, X = OH; Y = P h N H  
2, X = P h N H ;  Y = OH 

(1) 
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a similar reaction was conducted in deuterated diethyl 
ether and monitored by 'H NMR, however, no adduct 
formation was observed even after 24 h. Upon concen- 
tration (25 "C; 30 mmHg), removal of excess aniline under 
high vacuum (45 min; 25 "C), and subsequent reexami- 
nation by lH NMR, conversion of the epoxide to the same 
regioisomeric adducts as in eq 1 was observed. Thus, 
aniline adducts are formed during the concentration step. 
DMBA 5,6-oxide was treated with 5 equiv of aniline in the 
absence of any solvent to confirm this conclusion; after 
2 h at 25 "C, 'H NMR analysis indicated essentially 
quantitative adduct formation in the same regioisomeric 
ratio as in eq 1. 

These results stand in sharp contrast to the corre- 
sponding reactions using more nucleophilic benzylamine 
and n-butylamine in place of aniline; under the same 
conditions as shown in eq 1, followed by concentration 
under vacuum at 25 "C, no reaction whatsoever was ob- 
served! Likewise, 5 equiv of neat benzylamine and of neat 
n-butylamine at  25 "C for 2 h failed to add to DMBA 
5,g-oxide to any appreciable extent. The exceptional 
ability of aniline to add to DMBA 5,6-oxideI2 suggests that 
a a-donor-r-acceptor complex might be involved. Indeed, 
a-stacking has recently been shown to be a critical factor 
in interaction of a PAH epoxide and a phen01.l~ 

Besides the significance of these results as a convenient 
method for preparing arylamine adducts with K-region 
PAH epoxides, the unexpectedly high reactivity of aniline 
toward DMBA 5,6-oxide in a nonaqueous organic medium 
may serve as a general model for the high and selective 
reactivity of the exocyclic amino group of guanine toward 
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epoxides of PAH's intercalated in DNA.14 
B. Heterogeneous Reactions. Although a homoge- 

neous solution of aniline in diethyl ether does not open 
DMBA 5,g-oxide effectively at  25 "C within 2 h, in the 
presence of alumina at  25 OC9 (or even at  -20 OC) for 2 h, 
aniline adds to DMBA 5,6-olride to produce trans adducts 
in 83% yield, with a 2:l regioselectivity for nucleophilic 
attack at  position 5 vs. 6 (eq 2). This relatively larger 

Notes 

3 
RZH 3:4 

PhNH, 67 : 33 
PhCH,NH, 60:40 

MeOH 78:22 
HOH 
t-BUSH 25:75 

n-BuNH, 75:25 

4 
yield of 3 + 4, % 

66 
76 
88 
97 
59 
30 

amount of C-6 attack by aniline under heterogeneous 
conditions is consistent with alumina's acidic sites coor- 
dinating with and activating the epoxide and thereby in- 
creasing the electrophilic character of C-6 more than that 
of C-5.15 The general ability of alumina to activate ep- 
oxides toward nucleophilic attacks was demonstrated also 
by addition of benzylamine, n-butylamine, methanol,16 
water, and tert-butyl mercaptan to DMBA 5,6-oxide at  25 
"C (eq 2). Especially significant aspects of eq 2 are as 
follows: (1) although benzylamine, n-butylamine, metha- 
nol, water, and tert-butyl mercaptan did not add to DMBA 
5,6-oxide under the homogeneous conditions used in eq 
1, high yields of adducts were generally obtained under the 
heterogeneous conditions of eq 2; (2) only 5-20 equiv of 
RZH species are needed to produce adducts efficiently; (3) 
for the hard nitrogen and oxygen nucleophiles,17 regiose- 
lective attack occurred at  C-5 of DMBA 5,6-oxide, which 
is sterically more accessible than C-6; (4) with the soft 
sulfur nucleophile, regioselective attack occurred at  the 
more electrophilic (i.e., softer) C-6 position.16 Taken to- 
gether with our previous r e s ~ l t s , ~  these heterogeneous 
alumina-promoted additions of structurally simple organic 
amines, alcohol, water, and mercaptan to a biologically very 
important PAH K-region epoxide represent a mild, ef- 
fective, and efficient synthetic method that may be useful 
also in preparing adducts between PAH epoxides and 
various biological nucleophiles.ls 
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Experimental Section 
DMBA 5,6-oxide was prepared as described by Harvey, Goh, 

and Corte~.'~ Diethyl ether was freshly distilled from the sodium 
ketyl of benzophenone. Methylene chloride and methanol were 
used as received from Baker. A n i i e  and n-butylamine were twice 
distilled before use and the heart-cut was employed. Benzylamine 
and 2-methyl-2-propanethiol were used as received from Aldrich. 
Woelm-200-B alumina, acitivity Super I, was the gift of Woelm 
Pharma. Preparative thin-layer chromatography (TLC) was 
performed with Analtech silica gel GF plates which were oven- 
activated for a minimum of 1 h at  120 "C prior to use. Visual- 
ization of developed plates was accomplished uia fluorescence 
quenching (254 nm). Proton nuclear magnetic resonance ('H 
NMR) spectra were obtained at  80 MHz (Varian CFT-20) or 300 
MHz (Bruker WM-300). Chemical shifts are reported in parts 
per million ( 6 )  relative to internal tetramethylsilane (6 = 0.000) 
in deuteriochloroform unless otherwise stated. Melting points 
were taken on a Mel-Temp apparatus and are uncorrected. 
Low-resolution mass spectra were determined with an MS-50 
spectrometer through the NSF Regional Instrumentation Facility, 
Middle Atlantic Mass Spectrometry Laboratory. 

General Procedures for Alumina Reactions. A thoroughly 
oven-dried round-bottomed flask equipped with a magnetic stir 
bar and a septum inlet is allowed to cool under nitrogen and then 
tared. After being charged with the indicated amount of alumina 
under an atmosphere of dry nitrogen in a glovebag, the flask is 
placed under a positive pressure of nitrogen via a needle inserted 
through the septum inlet. Enough diethyl ether is added to form 
a slurry and stirring initiated. To the slurry is added a weighed 
amount of the appropriate doping agent in the minimum amount 
of diethyl ether necessary to ensure quantitative transfer. After 
10 min, DMBA 5,6-oxide (ratio ca. 1 mmol per 15-25 g of alumina) 
is added via syringe in the minimum amount of diethyl ether 
required for dissolution and the syringe rinsed with an additional 
1-2 mL of solvent which is also added to the reaction mixture. 
After 2 h, methanol (or ethanol in the case of methanol-doped 
alumina) is added and the reaction mixture allowed to stir for 
at least 2 h. The mixture is then filtered and the solvents removed 
in vacuo. 

DMBA 5,6-0xide on Aniline-Doped Alumina. DMBA 
5,g-oxide (0.0341 g, 0.125 mmol) was allowed to react in diethyl 
ether with 2.1886 of Woelm-200-basic Super I activity alumina 
doped with aniline (0.0757 g, 0.813 mmol; 6.5 equiv) for 2 h at 
ambient temperature. Workup followed by preparative TLC 
(benzene/diethyl ether; 4:l) afforded 0.0202 g (44%) of 5,6-di- 
hydro-6-hydroxy-7,12-dimethyl-5-(phenylamino)benz[u] - 
anthracene (1) (Rf 0.56) and 0.0103 g (22%) of 5,6-dihydro-5- 
hydroxy-7,12-dimethy1-6- (phenylamino) benz [ a] anthracene (2) (Rf 

OH, NH) 2.716 (s, 3 H; 7-Me), 2.992 (s, 3 H; 12-Me), 5.071 (d, 

(m, 13 H; Ar H). Irradiation of the higher field 7-Me signal (6 
2.716) gave a nuclear Overhauser enhancement (NOE) of ca. 16% 
for the doublet at  lower field (6 5.240), confirming the assignment 
of that resonance as the methine of (2-6. 'H NMR (CD30D): 6 
2.69 (9, 3 H; 7-Me), 2.99 (s, 3 H; 12-Me), 5.02 (d, J = 2.9 Hz, 1 
H; H5), 5.14 (d, J = 2.9 Hz, 1 H; He), 6.50-8.25 (m, 13 H; Ar H). 
Chemical ionization mass spectroscopy showed a base peak of mle  
366 (molecular ion plus one). Anal. Calcd for C26H23N0.0.5H20: 
C, 83.39; H, 6.46; N, 3.74. Found: C, 83.17; H, 6.44; N, 3.71. 

3 H; 7-Me), 2.93 (s, 3 H; 12-Me), 4.81 (d, J = 3.1 Hz, 1 H; H5), 
5.37 (d, J = 3.1 Hz, 1 H; Hs), 6.50-8.25 (m, 13 H; Ar H): 'H NMR 
(CD30D) 6 2.64 (s, 3 H; 7-Me), 2.95 (s, 3 H; 12-Me), 4.74 (d, J 
= 3.1 Hz, 1 H; H5), 5.39 (d, J = 3.1 Hz, 1 H; He), 6.48-8.20 (m, 
13 H, Ar H). Chemical ionization mass spectroscopy showed a 
base peak of m / e  366 (molecular ion plus one). Regiochemistry 
was assigned in a manner analogous to that used for the adducts 

0.44). Adduct 1: 'H NMR (CDC13, 300 MHz) 6 1.2-1.8 (b, 2 H, 

J = 3.015 Hz, 1 H; Hs), 5.240 (d, J = 3.015 Hz, 1 H; He), 6.67-8.20 

Adduct 2: 'H NMR (CDC13) 6 1.2-2.0 (b, 2 H; OH, NH), 2.69 (9, 

(18) (a) For homogeneous reaction of DMBA 5,6-oxide with nucleo- 
sides, see: Friesel, H.; Hecker, E. Cancer Lett. 1977, 3, 169. (b) For 
homogeneous reactions of some K-region epoxides with phosphodiesters, 
see: Di Raddo, P.; Chan, T. H. J .  Org. Chem. 1982,47, 1427. 

(19) Harvey, R. G.; Goh, S. H.; Cortez, C. J. Am. Chem. SOC. 1975,97, 
3468. 
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of guanosine and DMBA 5 ,6 -0x ide .~~*~~  
DMBA 5,6-0xide with Aniline in Diethyl Ether. To a 

solution of DMBA 5,6-oxide (0.0120 g, 0.0440 mmol) in diethyl 
ether (1 mL) containing methylene chloride (0.5 mL) was added 
a solution of aniline (0.0204 g, 0.219 mmol; 5 equiv) in diethyl 
ether (1 mL). After 2 h, the mixture was concentrated in vacuo 
a t  room temperature. Preparative TLC (diethyl ether) of the 
residue and isolation of the material with R, 0.62 gave 0.0140 g 
(88%) of a mixture of adducts 1 and 2 in a ratio of 80:20 ('H 
NMR). 

DMBA 5,6-0xide on n -Butylamine-Doped Alumina. 
DMBA 5,6-oxide (0.0071 g, 0.026 mmol) was allowed to react in 
diethyl ether with 0.1516 g of W-200-B alumina doped with n- 
butylamine (0.0114 g, 0.155 mmol; 6 equiv) for 2 h at  ambient 
temperature. Workup afforded 0.0079 g (88%) of a spectro- 
scopically clean ('H NMR) mixture of regioisomeric adducts in 
a ratio of 3:l; mass spectrum, mle 345 (parent, molecular ion). 
The major isomer was assigned, in a manner similar to that 
previously discussed for the anilino derivatives, as trans&(n- 
butylamino)-5,6-dihydro-6-hydroxy-7,12-dimethylbenz[a] - 
anthracene: 'H NMR (CDCl,) 6 0.75-1.50 (m, 7 H; (CH2)&H3), 
1.50-1.75 (b, 2 H; NH, OH), 2.30-2.80 (m, 2 H; CH2N), 2.81 (s, 
3 H; 7-Me), 2.94 (8 ,  3 H; 12-Me), 4.48 (d, J = 3.3 Hz, 1 H; H5), 
4.93 (d, J = 3.3 Hz, 2 H HJ, 7.25-8.25 (m, 8 H, Ar H). The minor 
isomer was assigned as trans-6-(n-butylamino)-5,6-dihydro-5- 
hydroxy-7,12-dimethylbenz[a]anthracene: 'H NMR (CDCl,) as 
described above with the exception of 6 3.94 (d, J = 3.2 Hz, 1 H; 
H5) and 5.33 (d, J = 3.2 Hz, 1 H; H6). 

DMBA 5,6-0xide on Methanol-Doped Alumina. DMBA 
5,6-oxide (0.0385 g, 0.141 mmol) was allowed to react in diethyl 
ether for 2 h at  ambient temperature with 1.4323 g of Woelm- 
200-Basic Super I activity alumina which had been doped with 
triethylamine (0.0200 g, 1.5%) and methanol (0.0627 g, 1.959 
mmol; 14 equiv). The usual workup was effected with absolute 
ethanol and afforded, after filtration of the alumina and con- 
centration of the ethanol in vacuo, 0.0417 g (97%) of a 78:22 
mixture of regioisomeric methanolysis products as determined 
by 'H NMR spectroscopy.'6 Preparative TLC (benzeneldiethyl 
ether; 1:l) gave 0.0301 g (70%) of the mixture (RfO.49) in the same 
ratio as before chromatography. The major regioisomer 3 dis- 
played signals ('H NMR, CDCl,; 300 MHz) at  6 2.8359 (s, 3 H; 
7-Me) 2.9576 (s, 3 H; 12-Me), 3.3504 (s, 3 H; OMe), 5.002 (d, J 

those of the minor isomer 4 were 6 2.8212 (s, 3 H; 7-Me), 2.9429 
(s, 3 H; 12-Me), 3.3086 (s, 3 H; OMe), 4.428 ( d , J  = 2.79,l H 5-H), 
5.3629 (d, J = 2.79, 1 H; H-6). The remainder of the spectral 
information for the two isomers was indistinguishable: 6 1.88 (b 
s, 1 H; OH), 7.32-7.75, 8.10-8.25 (m, 8 H; Ar H). 

The regiochemistry of these adducts was assigned on the basis 
of multiple NOE measurements as follows. Simultaneous irra- 
diation of the 7-Me signals for both 3 and 4 resulted in en- 
hancement of the downfield methine resonances of 3 (ca. 20%) 
and 4 (ca. 12%), thus establishing these as the 6-H resonance of 
3 at 5.063 ppm and the 6-H resonance of 4 at 5.364 ppm. Further, 
simultaneous irradiation of the methoxy signals of both 3 and 4 
caused enhancement of the benzylic protons at  C-5 (5%) and C-6 
(8%) of 3 while only the higher field methine proton at  C-5 of 
4 suffered enhancement (8%). Inspection of molecular models 
revealed that the methine proton of closer proximity to the 
methoxyl protons for both 3 and 4 is that which resides on that 
carbon that is adjacent to the methoxy-bearing carbon. Thus, 
the major isomer 3 is assigned as the 5-methoxy adduct while 4 
is assigned as the 6-methoxy isomer in consideration of the 
magnitudes of the various NOE measurements. That no NOE 
is associated with the 6-H of 4 may be attributed to the steric 
congestion which would rise from interaction of the methoxy group 
with the 7-methyl upon close approach to the 6-H. For the major 
isomer 3 this type of interaction is not present and as a result 
both methines are enhanced but to differing extents. 

Also, analysis of the chemical shifts of these adducts as de- 
scribed earlier for the adducts of guanosine and DMBA 5,6- 
o ~ i d e ~ ~ v ~ ~  supports these assignments in that the carbon bearing 
the methoxyl is shifted downfield by 0.26 ppm in 3 and 0.16 ppm 
in 4 relative to the dihydrodiol while the methines on adjacent 
benzylic positions in 3 and 4 are shifted upfield by 0.14 and 0.31 
ppm, respectively. 

= 3.38, 1 H; 5-H), 5.063 (dd, J = 3.38 and 1.36 Hz, 1 H; 6-H) and 
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DMBA 5,6-0xide with Methanol in Diethyl Ether. To a 
solution of DMBA 5,6-oxide (0.0050 g, 0.0183 mmol) in diethyl 
ether (1 mL) was added a solution of methanol (0.0121 g, 0.378 
mmol; 21 equiv), and triethylamine (0.0011 g) in diethyl ether 
(1 mL). After 2 h, the volatile5 were removed in vacuo. The 
residue was examined by 'H NMR spectroscopy and consisted 
of unchanged arene oxide. A virtually quantitative recovery was 
obtained. 

DMBA 5,6-0xide on Water-Doped Alumina. DMBA 5,6- 
oxide (0.0076 g, 0.028 mmol) was allowed to react in diethyl ether 
with 0.5822 g of W-200-B alumina doped with distilled water (10 
pL, 0.55 mmol; 20 equiv) for 2 h at ambient temperature. Workup 
followed by preparative TLC (diethyl ether) afforded 0.0048 g 
(59%) of trans-5,6-dihydroxy-5,6-dihydro-7,12-dimethylbenz- 
[alanthra~ene: '~ 'H NMR (CDClJ 6 1.50-1.80 (b s, 2 H, OH), 
2.83 (s, 3 H; 7-Me), 2.93 ( 8 ,  3 H; 12-Me), 4.88 (d, J = 3,5 Hz, 1 

Hs), 7.31-8.21 (m, 8 H; Ar H); mass spectrum, mle 290 (parent, 
molecular ion). Treatment of this diol with acetic anhydride in 
pyridine at ambient temperature for 24 h followed by conventional 
workup afforded the trans diacetate derivative, which was re- 
crystallized from ether/hexane (mp 199-200 "C, trans diacetate 
lit.lg mp 210-211 "C, cis diacetate lit.19 mp 154-156 "C) and 
exhibited spectral characteristics in accord with l i t e r a t ~ e ' ~  values. 

DMBA 5,6-0xide on 2-Methyl-2-propanethiol-Doped 
Alumina. DMBA 5,6-oxide (0.0126 g, 0.0462 mmol) was allowed 
to react in diethyl ether with 0.7582 g of W-200-B alumina doped 
with 2-methyl-2-propanethiol (0.0208 g, 0.231 mmol) for 2 h at 
ambient temperature. Workup followed by preparative TLC 
afforded 0.0045 g (33%) of trans-5,6-dihydroxy-5,6-dihydro- 
7,12-dimethylbenz[a]anthracene as well as 0.0065 g (39%) of two 
regioisomeric addition products in a 3:l ratio by 'H NMR analysis. 
The predominant isomer was assigned as trans-5-hydroxy-6- 
[ (2-methyl-2-propyl)thio]-5,6-dihydro-7,12-dimethylbenz[a]- 
anthracene and the minor isomer was asigned as the trans-6- 
hydroxy-5- [ (2-methyl-2-propyl)thio]-5,6-dihydro derivative on the 
basis of 'H NMR (300 MHz) data in accord with that previously 
noted.lg 
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T h e  general method of reacting a monosubstituted 
acetylene with an ortho ester, in the presence of a zinc 
halide catalyst, has become routinely used for the prepa- 
ration of acetylenic diethyl acetals in good to excellent 
yields.1,2 However, there are some acetals that are either 

(1) Howk, B. W.; Sauer, J. C. J. Am.  Chem. SOC. 1958,80, 4607. 
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